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INVESTIGATION OF ST~ILITY IN CURTAIN PROBLEMS OF NON-LINEAR MECHAN~&S* 

O.A. AZABOVA, I. V.KUZWETS0VAandM.M. KHAPAEV 

The generalized Liapunov second method /l/ is used to investigate the 
stability of resonance modes in a non-linear multifrequency system. The 
results are used to study the oscillations of a pendulum whose point of 
suspension performs small harmonic two-frequency motions in resonance with 
the natural oscillation of the pendulum and, also, the two-frequency problem 
of the motion of a satellite relative to the centre of mass. In estimating 
the small denominators in these problems no reduction to systems with a 
lower number of frequencies was achieved. 

Consider the equation 

2" (t) + o2 sin 5 = Fcf (5, z', c@ . . ., co&), 0 < p < 1 (1) 

which describes many important practical oscillation processes such as the motion of a satel- 
lite in a gravitational field of force, the vibration of the mechanical structure ofanacceler- 
ator with rigid focusing, etc. 

Linear and non-linear equations of the form (1) with small non-linear perturbations have 
been investigated by many authors. A detailed investigation of the action of external periodic 
forces on oscillaing systems close to linear was carried out over a long time interval T= 

0 (0 8 and questions of the stability of resonance amplitudes in the case of parametric 
resonance were considered in the single-frequency case /2, 3/, 

Below, Eq.(l) is considered on the assumption that the natural oscillation frequencies 
and the external forces are of comparable magnitude. In this case it reduces to a multi- 
frequency system of first-order differential equations of the standard Bogoliubov form. The 
small denominators that occur, inherent in multifrequency systems, are estimated in terms of 
the magnitude of the neighbourhood of the point investigated for stability. 

When IL= 0, Eq.(l) is integrated in elliptic functions, whose general solution defines 
the oscillation 

or rotation 

a = 2 arcsin (k sn (2~2~~ II (k) cp, k)) 

where 
a = 2 am (n-l K (k) cpI k) 

tp = 00 (k) (t + tJ, t, = eonst 

ma(k)=+ in the case of oscillations 
2 (k) 

%(&)=$$J- in the case of rotation 

K(k) is the complete elliptic integral of the first kind and o,(k)is the frequency of natural 
motions. 

Consider the case of oscillations (rotation can be investigated similarly). 
2. arcsin k, then it is convenient to select k, 

Since -=E: 
as the variable that defines the oscillation 

amplitude, and to select cp as the phase. 
We will transform Eq.(lf intoamulti-oscillation system in terms of the variables k, cp 

in the standard Bogoliubov form. We assume that f (5, Y, I)- f (z, I, s,,, . . . . zn+l) is a ‘h periodic 

function of the variables zl, . . . . %+I, and [n/2]+ 2 times continuously differentiable and 

We substitute into Eq.(l) the variables 

== a (k, q), r*- 00 W aq' (k, cp) 

and introduce the action integral 
2s 

I(k)=es ++'(k,cp)@~, r(k)==D(k) 
0 

(2) 
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For the new variables k, cp we obtain a multifrequency system of ordinary differential 
equations in standard Bogoliubov form 

k' = of (a 6% ?1, 00 W %' (k, cp), '~1, . . -1 cp,) x (7; 

as.’ & d/f) (kl - @ Vk iii) 
tp ’ = (u. fk) - 14 (a (k, cpfs 00 (k) +’ fk, 4. ~1, . . . 

‘f’n 1 uk’ (k, d/D (4 - 00 (4 + I.IQ, 6% 37 

cp;” - 01, vi = W, t = 1, . . ., n, T = (cp, ‘pl, . . ., cpn) 

The vector of the frequencies G?=LII((L)~ (k), al,..., w,)consists of the angular frequency 
@E(k) and the perturbing-force frequencies. 

we call k, the point of system resonance, if there exists an integral vector ij = (PO7 
P17 * . ., pn) such that 

~ooo @of +P,W + - . . + Knin =O 

To investigate the Liapunov stability of some resonance amplitude, we apply the general- 
ized Liapunov second method /l/. 

As the unperturbed Liapunov function we take vo= Ik - k, 1 and consider the segments 
q-=lk- k, I<e. where O<e< so and -so (by virtue of the propertiesofthe function o. fk)) 

does not exceed the distance from k, to the nearest resonance amplitude. Then the E-neigh- 
bourhood of the point for O< S<Eo does not contain other resonance values. 

The perturbed Liapanov function for q< ]k -k. 1 <E is 

V (k, ?) = Vo (4 + PV, 6, iii) 

V,(k,Q= i 
c 

F,,, (4 @P (k - h) 
i% 4 

&W 5 
mTe0 

where F,(k) are the coefficients of the Fourier series of the function 
The function V, (k, ip) in the ring indicated exists and is bounded, 

the assumptions made the function F (k,Tji) can be expanded in absolutely 
ent Fourier series and F,(k)- 0, andfor the small denominators (!a, m) 

m* (k) + $ mtwl - mo (00 (k) - 00 (4)) = 

(4) 

F G% 3% 
since by virtue of 
and uniformly converg- 
the estimate 

~0’ tko) I k-l- ko I = 0 fs, TI) a’ (kt,), co/ (ko) < 0 

holds by virtue of the properties of the function coo(k). 
If we differentiate the function (4) along the solution of system (3) we obtain 

All the conditionsofTheorem 2 of /l/ are thus satisfied for system /3/ and the Liapunov 
function (41, and for the time during which the solution k(t) remains in the E-neighbourhood 
of point k,. the estimate T= O(p*) holds. 

All these estimates hold for the first resonances, as long as the difference between 

two adjacent resonances does not become a quantity of order p. 

Example 1. Let us use the results obtained to investigate the stability of the resonance 
amplitude of a pendulum whose point of suspension performs plane oscillations as given by 

o’sc4sv,t, y = b sin (v,t + x) 

where a, b,X are certain constants. 
Let cp be the angle of deflection from the lower position of equilibrium, mm)/3 be 

the natural oscillation frequency of the pendulum, and 1 the length of the thread. We assume 

that alli<%. This means that the point of suspension performs small oscillations. The 

pendulum equation of motion has the form 

~.*+8in~~fL(CcSQtplCOS~+~S~~Sintp) 

9 V% 
@I- 0 I wi - 7, ‘PI = VI; 

QS’~3-t-X, a== $(%)‘, 7=(Of, p+lo;” 

Using the substitution (21, we obtain a three-frequency system in standard Bogoliubov 

form 
k'=p i~cn~~(*--Zk'~~;~p)cos~+ (61 

ksn-cpcn2Ko =(W 2K (kb 
x x cp dn 7 cp sin p2 1 
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We expand the right side of the first of Eqs.(6) in a Fourier series 

Noting that in this case the function P(k,i$) is analytic in ifj. The coefficients 0,,,(k), b,(k), 

c,(k) approach zero exponentially as m and sz-D;). Consequently, when 

on the right side of the first of Eqs.(6) non-oscillating terms of the form constcosli0, 00natsin 

(70 - x), COnstcOB (%a - x) appear, i.e. resonance effects are present. In agreement with the above 

results, the point & that satisfies one of Eqs.17) is stable during the time T=0@-5). 

Exam@? 2. Let us investigate the stability of resonance modes in the problem of the 
oscillations and rotations of a satellite moving in an elliptic orbit in a central gravita- 
tional field. The system that describes the satellite motions is a two-frequency one, whose 
vector of frequencies consists of the satellite rotation frequency relative to the centre of 
mass and the frequency of its rotation the Earth. 

Resonance oscillations and rotations of the satellite relative to its centre of mass in 
the orbital plane were earlier studied /4, S/* (*See also Markeyev, A.P. Investigation of the 
stability of motion in some problems of celestial mechanis. Preprint Inst. Prikl. Matem. AR 
SSSR Moscow, 1970.) by the Krylov-Bogoliubov averaging method /2,‘ 3/ with rigid constraints 
on resonance frequencies that reduce the two-frequency input systems to a single-frequency 
one. 

The small oscillations of a satellite and resonance effects in the motion of the Moon 
were investigated in /6/. 

Let the satellite principal axis of intertia be normal to the plane of the orbit. We 
denote the moments of inertia relative to that axis by B, and the moments of inertia relative 
to the two other principal axes by A, C (A&C). Then, with an accuracy to within the ratio of 
the satellite dimensions to those of the orbit, the satellite equation of motion has the form 

/4/ 
(1 + c COB 8) d’8/dP - 2r sin 0 d6/d8 _t 3~’ sin 6 = 4esin 0 (8) 
oe = (A - C)/B < 1 

where 6 is twice angle between the radius vector of the centre of mass and the axis of inertia, 
with the moment of inertia relative to it being C,c is the orbit eccentricity, and 6 is the 
angular distance of the radius vector from the orbit perigee. 

When c=- 0, Eq.(8) reduces to the equation of the pendulum and defines the motion of a 
satellite in a circular orbit. 

Consider the resonance case eel when the orbit is close to circular. To within quantit- 
ies 0 (c') , we have 

$ + 3a* sin is = et (e, 6, $-) 

We transform this equation to Bogoliubov standard form , using a resplacement of variables 
similar to (2) 

6 = e (k, 0% cp = 00 (k)@ + B,), So = const. 

We obtain a system of standard form of type (3) 

k' = .& (k. cp. e), 9' = oo (k) + eQ, (k, cp, 8), 6' = i 

F tk, PI+ S) = f (64 a(k. cp), a0 (8 ee' (k, 9)) a*' fk, rp)tB (k) 
Q, fkv % 8) = --f (6% a (kv Cp), 00 (k) 4 (k, (p)) at’ (k, q+‘B (k) 

We expand the right sides of this system in Fourier series, and use simple geometry to 
obtain terms of the form 

Note that 
G (k, % gn (k) sin (e f ncp), gn' (k) sin (e - alp) 

Bn' (k) sin te - nrpf - -gn’ (k) (9) 
0ia (8 - 00~ (k)(e + eo)) = -_g,s (k) sin e. 

when oO (k) = l/n 
Thus when oO (k)= iIn where n is a positive integer, 

system slowly varying terms of the form -g,‘(k)sine,, i.e. 
we have on the right sides of the 
resonance effects are observed both 

in the case of oscillations and in the case of rotations. By the above reasoning resonances 
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of the form (9) are stable with respect to the slow variable k during a time T= O(e-2). 
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ON THE ASYMPTOTIC STABILITY AND INSTABILITY OF THE 
A NAN-AUTONOMOUS SYSTEM* 

ZEROTH SOLUTION OF 

A.S. ANDPEEV 

A non-autonomous set of differential equations with right side satisfying 
conditions for the existence of limit sets of differential equations /l, 2/ 
is considered. Theorems are proved on the limit behaviour of the solutions, 
on the asymptotic stability and instability of the zeroth solution of such 
a set in the presence of a Liapunov function with a derivative of constant 
sign. On the basis of these theorems, sufficient conditions are obtained 
for the asymptotic stability and instability of the zeroth equilibrium 
position of a non-autonomous mechanical system. A problem is solved on 
the asymptotic stabilization of a given three-axis orientation in space 
for a solid with variable moments of inertia. 

1. Consider the following set of differential equations 

2‘ = x (t, 3) (X (t. 0) ms 0) (1.1) 

where x and X are real n-vectors, the function X(&x) is defined in the domain R+ X r(R+= 

ro, f Qi) [, r * ( II s II < He + =)r II = II is a certain norm in a") and satisfies conditions (A) 

from /l/: X(t, z) is measurable in t for fixed x, and is continuous in x for fixed t; for 
any compact set PICr two local La-functions k,(t) and &(t)exist such #at for any s,y Erl 

the function hi(t) is uniformly continuous in the mean on any segement [r, z f 11~: R+, and the 
function b(t) is bounded in the norm on [t,r + 11, i.e. 

for any measurable set Ec]z, z + I] by a measure less than p=p((e, r,)>O, and a certain 
number p = p (r,). 

As is shown in /l/, conditions (A) guarantee the existence of 5OhtiOns of (l.l), in the 
Caratheodory sense, and their uniqueness, the compactness (in weak &-topology) of the family 

of functions {X(t, z)}, satisfying these conditions, p articularly the existence of limit func- 

tions tp (t, t) to X (t, 2), the mutual continuity of the solutions of the initial system (l.l), 
and the.iolutions of the limit systems 

i = m (t, x) (1.2) 

We note that a special case of conditions (A) is Lipschitz conditions in t and x, which 
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